资源类型

期刊论文 1807

会议视频 133

会议信息 2

会议专题 1

年份

2024 3

2023 151

2022 178

2021 223

2020 158

2019 122

2018 95

2017 105

2016 101

2015 89

2014 54

2013 56

2012 62

2011 64

2010 55

2009 54

2008 51

2007 59

2006 31

2005 24

展开 ︾

关键词

可持续发展 66

发展战略 41

发展 27

发展趋势 22

智能制造 20

能源 18

农业科学 16

战略研究 12

中国 11

关键技术 10

医学 9

核能 9

工程管理 8

技术 8

水资源 8

环境 8

秦巴山脉区域 8

天然气 7

展望 7

展开 ︾

检索范围:

排序: 展示方式:

Pollutant reduction effectiveness of low-impact development drainage system in a campus

Shuhan Zhang, Yingying Meng, Jiao Pan, Jiangang Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0969-8

摘要: Building a rainwater system based on the idea of low-impact development (LID) is an important aspect of the current “sponge city” construction in China. The “sponge city” concept emphasizes that the runoff can permeate the soil or be stored temporarily, and rainwater could be used again when it is needed. Beijing is one of the earliest cities to study rainwater harvesting and LID techniques in China. Through long-term monitoring of rainfall, runoff flow, and water quality of a campus demonstration project in Beijing, the runoff quantity and pollutant concentration variations have been analyzed. Furthermore, the runoff reduction effects of single LID measure, such as green roof, filtration chamber, and permeable pavement, have been investigated. Additionally, the overall reduction effectiveness of the LID system on the average annual rainfall runoff and pollution load has been discussed. Preliminary studies suggest that runoff pollutant concentration is positively correlated with the rainfall interval time, and the longer rainfall interval time leads to higher runoff pollutant concentrations. The very good outflow quality of the rainwater harvesting system could satisfy the reclaimed water quality standard for scenic entertainment use. The non-point-source pollution reduction effects of the LID system are obvious because the pollutants could be removed by filtration on the one hand and the pollution load could be reduced because of the significantly reduced outflow on the other hand.

关键词: Low-impact development     Rainwater harvesting     Non-point-source pollution reduction     Campus    

Life cycle cost savings analysis on traditional drainage systems from low impact development strategies

Pengfei ZHANG, Samuel T. ARIARATNAM

《工程管理前沿(英文)》 2021年 第8卷 第1期   页码 88-97 doi: 10.1007/s42524-020-0063-y

摘要: Areas that are covered with natural vegetation have been converted into asphalt, concrete, or roofed structures and have increased surface impermeability and decreased natural drainage capability. Conventional drainage systems were built to mimic natural drainage patterns to prevent the occurrence of waterlogging in developed sites. These drainage systems consist of two major components: 1) a stormwater conduit system, and 2) a runoff storage system. Runoff storage systems contain retention basins and drywells that are used to store and percolate runoff, whereas conduit systems are combination of catch basins and conduit pipes used to collect and transport runoff. The construction of these drainage systems is costly and may cause significant environmental disturbance. In this study, low impact development (LID) methods that consist of extensive green roofs (GRs) and permeable interlocking concrete pavements (PICPs) are applied in real-world construction projects. Construction project documents were reviewed, and related cost information was gathered through the accepted bidding proposals and interviews of specialty contractors in the metropolitan area of Phoenix, Arizona. Results indicate that the application of both LID methods to existing projects can save an average of 27.2% in life cycle costs (LCC) for a 50-year service life and 18.7% in LCC for a 25-year service life on the proposed drainage system, respectively.

关键词: low impact development     traditional drainage system     hydraulic benefits     life-cycle cost    

Can floor-area-ratio incentive promote low impact development in a highly urbanized area?

Ming Cheng, Huapeng Qin, Kangmao He, Hongliang Xu

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-017-1002-y

摘要: As an environmental friendly measure for surface runoff reduction, low impact development (LID) has been applied successfully in urban areas. However, due to high price of land and additional expense for LID construction in highly urbanized areas, the developers of real estate would not like to proceed LID exploitation. Floor area ratio (FAR) refers to “the ratio of a building’s total floor area to the size of the piece of land upon which it is built.” Increasing FAR indicates that the developers can construct higher buildings and earn more money. By means of awarding FAR, the developers may be willing to practice LID construction. In this study, a new residential district is selected as a case study to analyze the trade-off between the runoff reduction goal achieving by LID practices and the incentive of awarding FAR to promote LID construction. The System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) model is applied to simulate the runoff reduction under various LID designs and then derive the Pareto-optimal solutions to achieve urban runoff reduction goals based on cost efficiency. The results indicates that the maximum surface runoff reduction is 20.5%. Under the extremity scenarios, the government has options to award FAR of 0.028, 0.038 and 0.047 and the net benefits developers gain are 0 CNY, one million CNY and two million CNY, respectively. The results provide a LID construction guideline related to awarding FAR, which supports incentive policy making for promoting LID practices in the highly urbanized areas.

关键词: Low impact development     Runoff reduction     Incentive     Floor area ratio     SUSTAIN(System for Urban Stormwater Treatment and Analysis IntegratioN)    

Life cycle assessment of low impact development technologies combined with conventional centralized water

Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0851-0

摘要: Hybrid system of LID technologies and conventional system was examined. Bioretention areas, rainwater harvesting, and xeriscaping were considered. Technology feasibility was simulated for land use and population density. Synergistic effects of technologies were quantified in defined zones. Uncertainty test was conducted with pedigree matrix and Monte Carlo analysis. Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, and xeriscaping can control stormwater runoff, supply non-potable water, and landscape open space. This study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m . We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50% and 25%, respectively; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capita available for LID technologies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.

关键词: Life cycle assessment (LCA)     Low impact development (LID)     Bioretention area     Rainwater harvesting     Xeriscaping    

Low Impact Development and Sponge City Construction for Urban Stormwater Management

Haifeng Jia, Shaw L. Yu, Huapeng Qin

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0989-4

Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control

Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0952-4

摘要: Stimulated by the recent USEPA’s green stormwater infrastructure (GSI) guidance and policies, GSI systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well-developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst performance for high intensity and long duration events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term control strategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event.

关键词: Green stormwater infrastructure (GSI)     Combined sewer overflows (CSOs)     Urban flooding     Low impact development (LID)     Stormwater Management Model (SWMM)    

从生态学角度研究低影响开发技术对乔治亚州亚特兰大市不同居住区的影响 Article

Zackery B. Morris, Stephen M. Malone, Abigail R. Cohen, Marc J. Weissburg, Bert Bras

《工程(英文)》 2018年 第4卷 第2期   页码 194-199 doi: 10.1016/j.eng.2018.03.005

摘要:
低影响开发(LID)技术在减少水的使用和雨水径流方面有很大的应用潜力,因此被认为在对传统的水利基础设施的改善方面起到可持续性的作用。这些技术包括生物凝集区、雨水收集和干湿法,所有这些都可以在居住区使用。在亚特兰大市,居民用水占总用水量的53%,因此,居住区对LID技术的实施具有重要的潜在影响力。本研究通过对自然生态系统的类比,从生态学角度分析了亚特兰大城市不同居住区内LID 策略的使用情况。分析表明这些技术,特别是随着灰水系统的加入,在这些生态指标的基础上,改进了传统的住宅水网。较高的指标表明,改进后的指标与健康的自然生态系统的平衡程度更高。

关键词: 低影响开发技术     生态网络分析     住宅用水量    

Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal

Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1349-1358 doi: 10.1007/s11709-020-0650-3

摘要: A theoretical solution is aimed to be developed in this research for predicting the failure in internally pressurized composite pressure vessels exposed to low-velocity impact. Both in-plane and out-of-plane failure modes are taken into account simultaneously and thus all components of the stress and strain fields are derived. For this purpose, layer-wise theory is employed in a composite cylinder under internal pressure and low-velocity impact. Obtained stress/strain components are fed into appropriate failure criteria for investigating the occurrence of failure. In case of experiencing any in-plane failure mode, the evolution of damage is modeled using progressive damage modeling in the context of continuum damage mechanics. Namely, mechanical properties of failed ply are degraded and stress analysis is performed on the updated status of the model. In the event of delamination occurrence, the solution is terminated. The obtained results are validated with available experimental observations in open literature. It is observed that the sequence of in-plane failure and delamination varies by increasing the impact energy.

关键词: composite pressure vessel     low-velocity impact     failure     theoretical solution     progressive damage modeling    

Dynamic design of green stormwater infrastructure

Robert G. Traver, Ali Ebrahimian

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0973-z

摘要: This paper compares ongoing research results on hydrologic performance to common design and crediting criteria, and recommends a change in direction from a static to a dynamic perspective to fully credit the performance of green infrastructure. Examples used in this article are primarily stormwater control measures built for research on the campus of Villanova University [ , ]. Evidence is presented demonstrating that the common practice of crediting water volume based on soil and surface storage underestimates the performance potential, and suggests that the profession move to a more dynamic approach that incorporates exfiltration and evapotransporation. The framework for a dynamic approach is discussed, with a view to broaden our design focus by including climate, configuration and the soil surroundings. The substance of this work was presented as a keynote speech at the 2016 international Low Impact Development Conference in Beijing China [ ].

关键词: Low Impact Development (LID)     Stormwater control measures     Green infrastructure     Stormwater design    

Integration of climate change considerations into environmental impact assessment — implementation, problems

I-Shin CHANG, Jing WU

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 598-607 doi: 10.1007/s11783-013-0496-1

摘要: Climate change plays an important role in affecting and altering the course of human development. So far, there have been no effective and efficient techniques to directly quantify the influences of climate change on human development, but there have been rough estimation and qualitative description of the effects. Since the 1990s, climate change considerations have been required to be included in environmental impact assessment, which is a flexible institutional framework of environmental risk evaluation and management. However, there have been no concrete achievements demonstrated. The purpose of this study was first to summarise the practical experience and to disclose the existing problems during the implementation of the process of integrating climate change considerations into environmental impact assessment in China through a case study. Currently in China, the practice of integrating climate change considerations into environmental impact assessment is mainly concentrated on the strategic environmental assessment level. The influences of climate change were identified as energy consumption, greenhouse gases emission, and the restraint of development under abnormal or extreme weather or climate conditions. Because of a lack of related technical guidelines and practical experience, the climate change considerations that have been selected and the evaluation methods that have been applied are quite different. Recommendations on policies, laws, and institutional regulations institution are proposed to better utilise environmental impact assessment to integrate climate change considerations into economic, social, and environmental decisions and actions.

关键词: climate change considerations     environmental impact assessment     energy consumption     greenhouse gases     low carbon    

BMP decision support system for evaluating stormwater management alternatives

Mow-Soung CHENG, Jenny X. ZHEN, Leslie SHOEMAKER,

《环境科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 453-463 doi: 10.1007/s11783-009-0153-x

摘要: Prince George’s County, Maryland, in the Washington D.C. metropolitan area has developed a best management practice decision support system (BMPDSS) to support analysis and decision making for stormwater management planning and design at both the site scale and the watershed levels. This paper presents a detailed description of the BMPDSS. A case study that demonstrates the application of the system is also included. The case study involves a Green Highway project located in a highly urbanized area within the Anacostia River watershed of the county. Several best management practices (BMP) such as bioretention, filter vegetative swale, porous paving, and landscape infiltration are proposed for reducing highway runoff and improving water quality. The BMPDSS is used to identify and evaluate various alternatives to determine the most cost-effective types and combinations of BMPs that minimize the highway runoff pollution.

关键词: best management practices     decision support system     low impact development     geographic information system     optimization    

Advances in LID BMPs research and practice for urban runoff control in China

Haifeng JIA, Hairong YAO, Shaw L. YU

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 709-720 doi: 10.1007/s11783-013-0557-5

摘要: China is at present experiencing a very rapid urbanization process, which has brought a number of adverse impacts upon the water environment. In particular, urban runoff quantity and quality control have emerged as one of the key concerns for municipal officials. One of the strategies being considered is the use of a Low Impact Development type of Best Management Practices (LID BMPs) for urban storm water runoff quantity and quality control. In this paper, the situation surrounding urban runoff control in China is reviewed first. Then the conventional strategy and technologies for the construction and management of urban drainage systems are discussed, while exploring their inherent dilemmas. The LID BMPs are then introduced to control urban runoff in the context of urban sustainable water systems. After the comprehensive analysis of the various LID BMPs, the advances in LID BMPs research and practice for urban runoff control in China are investigated and summarized. At last, the difficulties of implementing LID BMPs in China are discussed, and a direction for the future is proposed.

关键词: urbanization     urban runoff control     Low Impact Development type of Best Management Practices (LID BMPs)     China    

China’s Sponge City construction: A discussion on technical approaches

Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0984-9

摘要: Since 2014, China has been implementing the Sponge City Construction initiative, which represents an enormous and unprecedented effort by any government in the world for achieving urban sustainability. According to preliminary estimates, the total investment on the Sponge City Plan is roughly 100 to 150 million Yuan (RMB) ($15 to $22.5 million) average per square kilometer or 10 Trillion Yuan (RMB) ($1.5 Trillion) for the 657 cities nationwide. The Sponge City Plan (SCP) calls for the use of natural processes such as soil and vegetation as part of the urban runoff control strategy, which is similar to that of low impact development (LID) and green infrastructure (GI) practices being promoted in many parts of the world. The SCP includes as its goals not only effective urban flood control, but also rainwater harvest, water quality improvement and ecological restoration. So far, the SCP implementation has encountered some barriers and challenges due to many factors. The present paper presents a review of those barriers and challenges, offers discussions and recommendations on several technical aspects such as control goals and objectives; planning/design and construction of LID/GI practices; performance evaluation. Several key recommendations are proposed on Sponge City implementation strategy, Site-specific regulatory framework and technical guidance, Product innovation and certification, LID/GI Project financing, LID/GI professional training and certification, public outreach and education. It is expected that the successful implementation of the SCP not only will bring about a sustainable, eco-friendly urbanization process in China, but also contribute enormously to the LID/GI research and development with the vast amount of relevant data and experiences generated from the Sponge City construction projects.

关键词: Low impact development (LID)     Green infrastructure (GI)     Sponge City     Barriers     Construction strategies    

Flow and mass balance analysis of eco-bio infiltration system

Marla C. MANIQUIZ, Lee-Hyung KIM, Soyoung LEE, Jiyeon CHOI

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 612-619 doi: 10.1007/s11783-012-0448-1

摘要: A structured stormwater infiltration system was developed and constructed at a university campus and monitoring of storm events was performed during a one-year operation period. The flow and pollutant mass balances were analyzed and the overall efficiency of the system was assessed. While significant positive correlations were observed among rainfall, runoff and discharge volume ( = 0.93-0.99; <0.05), there was no significant correlations existed between rainfall, runoff, discharge volume and pollutant load. The system was more effective in reducing the runoff volume by more than 50% for small storm events but the difference between the runoff and discharge volume was significant even with rainfall greater than 10 mm. Results showed that the pollutant reduction rates were higher compared to the runoff volume reduction. Average pollutant reduction rates were in the range of 72% to 90% with coefficient of variation between 0.10 and 0.46. Comparable with runoff reduction, the system was more effective in reducing the pollutant load for small storm events, in the range of 80% to 100% for rainfall between 0 and 10 mm; while 65% to 80% for rainfall between 10 and 20 mm. Among the pollutant parameters, particulate matters was highly reduced by the system achieving only a maximum of 25% discharge load even after the entire runoff was completely discharged. The findings have proven the capability of the system as a tool in stormwater management achieving both flow reduction and water quality improvement.

关键词: best management practice     flow balance     low impact development     mass balance     nonpoint source     stormwater runoff    

A critical literature review of bioretention research for stormwater management in cold climate and future research recommendations

Hannah Kratky, Zhan Li, Yijun Chen, Chengjin Wang, Xiangfei Li, Tong Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0982-y

摘要: Bioretention is a popular best management practice of low impact development that effectively restores urban hydrologic characteristics to those of predevelopment and improves water quality prior to conveyance to surface waters. This is achieved by utilizing an engineered system containing a surface layer of mulch, a thick soil media often amended with a variety of materials to improve water quality, a variety of vegetation, and underdrains, depending on the surrounding soil characteristics. Bioretention systems have been studied quite extensively for warm climate applications, but data strongly supporting their long-term efficacy and application in cold climates is sparse. Although it is apparent that bioretention is an effective stormwater management system, its design in cold climate needs further research. Existing cold climate research has shown that coarser media is required to prevent concrete frost from forming. For spring, summer and fall seasons, if sufficient permeability exists to drain the system prior to freezing, peak flow and volume reduction can be maintained. Additionally, contaminants that are removed via filtration are also not impacted by cold climates. In contrary, dissolved contaminants, nutrients, and organics are significantly more variable in their ability to be removed or degraded via bioretention in colder temperatures. Winter road maintenance salts have been shown to negatively impact the removal of some contaminants and positively impact others, while their effects on properly selected vegetation or bacteria health are also not very well understood. Research in these water quality aspects has been inconsistent and therefore requires further study.

关键词: Bioretention     Cold climate     Low impact development     Stormwater    

标题 作者 时间 类型 操作

Pollutant reduction effectiveness of low-impact development drainage system in a campus

Shuhan Zhang, Yingying Meng, Jiao Pan, Jiangang Chen

期刊论文

Life cycle cost savings analysis on traditional drainage systems from low impact development strategies

Pengfei ZHANG, Samuel T. ARIARATNAM

期刊论文

Can floor-area-ratio incentive promote low impact development in a highly urbanized area?

Ming Cheng, Huapeng Qin, Kangmao He, Hongliang Xu

期刊论文

Life cycle assessment of low impact development technologies combined with conventional centralized water

Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden

期刊论文

Low Impact Development and Sponge City Construction for Urban Stormwater Management

Haifeng Jia, Shaw L. Yu, Huapeng Qin

期刊论文

Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control

Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying

期刊论文

从生态学角度研究低影响开发技术对乔治亚州亚特兰大市不同居住区的影响

Zackery B. Morris, Stephen M. Malone, Abigail R. Cohen, Marc J. Weissburg, Bert Bras

期刊论文

Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal

Roham RAFIEE, Hossein RASHEDI, Shiva REZAEE

期刊论文

Dynamic design of green stormwater infrastructure

Robert G. Traver, Ali Ebrahimian

期刊论文

Integration of climate change considerations into environmental impact assessment — implementation, problems

I-Shin CHANG, Jing WU

期刊论文

BMP decision support system for evaluating stormwater management alternatives

Mow-Soung CHENG, Jenny X. ZHEN, Leslie SHOEMAKER,

期刊论文

Advances in LID BMPs research and practice for urban runoff control in China

Haifeng JIA, Hairong YAO, Shaw L. YU

期刊论文

China’s Sponge City construction: A discussion on technical approaches

Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu

期刊论文

Flow and mass balance analysis of eco-bio infiltration system

Marla C. MANIQUIZ, Lee-Hyung KIM, Soyoung LEE, Jiyeon CHOI

期刊论文

A critical literature review of bioretention research for stormwater management in cold climate and future research recommendations

Hannah Kratky, Zhan Li, Yijun Chen, Chengjin Wang, Xiangfei Li, Tong Yu

期刊论文